
● Please share your slides! These talks are pretty unique.
○ Email me (sb54@illinois.edu) or slack me

● Also contact me if you want me to add a link to your
name on the meetup webpage

● Speakers to invite
● List of speakers

Announcements!

mailto:sb54@illinois.edu
https://docs.google.com/document/d/14C4YfCMSm7Eo15dtvS7iXnQ_7cLjGLsZXEjWVhlcpc4/edit?usp=sharing
https://docs.google.com/document/d/1dQboikQYXqbyOg5vtg6NEXCVU_4FzzkCM8wQBfvxMjc/edit?usp=sharing

A bunch of random thoughts on

Compiler IRs

● IRs are not a science (yet)
● Why do we create IRs?
● Types of IRs

○ Trees
■ High-level transformations
■ Turn them into DAGs

○ SSA
■ Where is the value in a φ used?

○ Multi-Level IRs (WHIRL)
■ Trade off?

● Undefined Behavior and poison values
● Target and source independence in IRs

Overview

● IRs are not a science (yet)
● Why do we create IRs?
● Types of IRs

○ Trees
■ High-level transformations
■ Turn them into DAGs

○ SSA
■ Where is the value in a φ used?

○ Multi-Level IRs (WHIRL)
■ Trade off?

● Undefined Behavior and Poison
● Target and source independence in IRs

Overview

● There is simply no metric to evaluate IRs
● It’s all empirical

● There is simply no metric to evaluate IRs
● It’s all empirical
● People’s intuitions may be wrong

● IRs are not a science (yet)
● Why do we create IRs?
● Types of IRs

○ Trees
■ High-level transformations
■ Turn them into DAGs

○ SSA
■ Where is the value in a φ used?

○ Multi-Level IRs (WHIRL)
■ Trade off?

● Undefined Behavior and Poison
● Target and source independence in IRs

Overview

● IRs are not a science (yet)
● Why do we create IRs?
● Types of IRs

○ Trees
■ High-level transformations
■ Turn them into DAGs

○ SSA
■ Where is the value in a φ used?

○ Multi-Level IRs (WHIRL)
■ Trade off?

● Undefined Behavior and Poison
● Target and source independence in IRs

Overview

print(...)
a.sort_values().head()

Jupyter Cell Source

print(...)
a.sort_values().head()

Pattern Matcher

print(...)
if isinstance(a, pd.Series):

 a.nsmallest(n=5)

else:

 a.sort_values().head()

Rewriter

Execution

High-Level
Transformations
in Dias

● IRs are not a science (yet)
● Why do we create IRs?
● Types of IRs

○ Trees
■ High-level transformations
■ Turn them into DAGs

○ SSA
■ Where is the value in a φ used?

○ Multi-Level IRs (WHIRL)
■ Trade off?

● Undefined Behavior and Poison
● Target and source independence in IRs

Overview

● Whole ANSI C compiler
explained in a book

● Badly written
● Still very educational

LCC DAGs

`-CompoundAssignOperator <line:4:5, col:15> 'int' lvalue '+=' ComputeLHSTy='int' ComputeResultTy='int'

 |-UnaryOperator <col:5, col:10> 'int' lvalue prefix '*' cannot overflow

 | `-CallExpr <col:6, col:10> 'int *'

 | `-ImplicitCastExpr <col:6> 'int *(*)()' <FunctionToPointerDecay>

 | `-DeclRefExpr <col:6> 'int *()' lvalue Function 0xc448be8 'log' 'int *()'

 `-IntegerLiteral <col:15> 'int' 3

Clang AST

● IRs are not a science (yet)
● Why do we create IRs?
● Types of IRs

○ Trees
■ High-level transformations
■ Turn them into DAGs

○ SSA
■ Where is the value in a φ used?

○ Multi-Level IRs (WHIRL)
■ Trade off?

● Undefined Behavior and Poison
● Target and source independence in IRs

Overview

What is the usage
point of %b ?

The Big Idea

φ’s turn control flow into data flow

● IRs are not a science (yet)
● Why do we create IRs?
● Types of IRs

○ Trees
■ High-level transformations
■ Turn them into DAGs

○ SSA
■ Where is the value in a φ used?

○ Multi-Level IRs (WHIRL)
■ Trade off?

● Undefined Behavior and Poison
● Target and source independence in IRs

Overview

Link

https://www.mcs.anl.gov/OpenAD/open64A.pdf

Where is the catch?

● Cognitive loaded
● Optimizations that cross levels

○ Vectorization in LLVM

● IRs are not a science (yet)
● Why do we create IRs?
● Types of IRs

○ Trees
■ High-level transformations
■ Turn them into DAGs

○ SSA
■ Where is the value in a φ used?

○ Multi-Level IRs (WHIRL)
■ Trade off?

● Undefined Behavior and Poison
● Target and source independence in IRs

Overview

Undefined Behavior

Undefined Behavior is just a design
choice!

Undefined Behavior

if (a + c < b + c)

if (a < b)

Correct ?

Undefined Behavior

if (INT_MAX + 1 < 0 + 1)

if (INT_MAX < 0)

Correct ?

Undefined Behavior

if (INT_MIN < 1)

if (INT_MAX < 0)

TRUE

FALSE

INCORRECT ?

Undefined Behavior

if (INT_MIN < 1)

if (INT_MAX < 0)

TRUE

FALSE

INCORRECT ? NO!
Signed Overflow is UB!

Undefined Behavior Enabling Transformations

Assume that the program does not
exhibit Undefined Behavior!

Inhibiting Undefined Behavior

int b, c;
…
for (int i = 0; i < N; ++i) {
 *p = b + c;
}

Loop-invariant!

Inhibiting Undefined Behavior

int b, c;
…
for (int i = 0; i < N; ++i) {
 *p = b + c;
}

Can we hoist?

Inhibiting Undefined Behavior

int b, c;
…
for (int i = 0; i < N; ++i) {
 *p = b + c;
} N <= 0 ?

Inhibiting Undefined Behavior

int b, c;
…
for (int i = 0; i < N; ++i) {
 *p = b + c;
}

Can we hoist? NO!

N <= 0 ?

Undefined Behavior Disabling Transformations

The compiler can’t make the
program more undefined!

Workaround ?

But it can make it more defined…

Define Signed Overflow ?

Define signed overflow as

2’s complement

Problems ?

The first example is
disabled

Problems ?

Problems ?

for (int i = 0; i < N; ++i) {
 p[i] = …;
}

Iteration count ?

Problems ?

for (int i = 0; i < N; ++i) {
 p[i] = …;
}

Iteration count ?

N == INT_MAX ?

Problems ?

for (int i = 0; i < N; ++i) {
 p[i] = …;
}

In 64-bit machine, sext in
every iteration

i32

Problems ?

for (int i = 0; i < N; ++i) {
 p[i] = …;
}

Widen to i64 ?

Problems ?

Other peephole optimizations:

● X + 1 > X → true
● X*2/2 → X
● ...

Define Signed Overflow ?

Define signed overflow as poison

Poison

Poison either poisons or causes
immediate Undefined Behavior

most math ops

- load, store
- sdiv, udiv
- call, invoke
- ...

Inhibiting Undefined Behavior

int b, c;
…
for (int i = 0; i < N; ++i) {
 *p = b + c;
}

Can we hoist?

Let’s do it!

int b, c;
…
int tmp = b + c;
for (int i = 0; i < N; ++i) {
 *p = tmp;
}
// Assume `tmp` is never used again

Case 1

int b, c;
…
int tmp = b + c;
for (int i = 0; i < N; ++i) {
 *p = tmp;
}
// Assume `tmp` is never used again

Does not overflow

Case 1

int b, c;
…
int tmp = b + c;
for (int i = 0; i < N; ++i) {
 *p = tmp;
}
// Assume `tmp` is never used again

Does not overflow

We don’t care

Case 2a

int b, c;
…
int tmp = b + c;
for (int i = 0; i < N; ++i) {
 *p = tmp;
}
// Assume `tmp` is never used again

Does overflow

Case 2a

int b, c;
…
int tmp = b + c;
for (int i = 0; i < N; ++i) {
 *p = tmp;
}
// Assume `tmp` is never used again

Does overflow

N <= 0

Case 2a

int b, c;
…
int tmp = b + c;
for (int i = 0; i < N; ++i) {
 *p = tmp;
}
// Assume `tmp` is never used again

Does overflow

N <= 0We never get in

Case 2a

int b, c;
…
int tmp = b + c;
for (int i = 0; i < N; ++i) {
 *p = tmp;
}
// Assume `tmp` is never used again

Does overflow

N <= 0We never get in We never use tmp

Case 2b

int b, c;
…
int tmp = b + c;
for (int i = 0; i < N; ++i) {
 *p = tmp;
}
// Assume `tmp` is never used again

Does overflow

Case 2b

int b, c;
…
int tmp = b + c;
for (int i = 0; i < N; ++i) {
 *p = tmp;
}
// Assume `tmp` is never used again

Does overflow

N > 0

Case 2b

int b, c;
…
int tmp = b + c;
for (int i = 0; i < N; ++i) {
 *p = tmp;
}
// Assume `tmp` is never used again

Does overflow

N > 0UB!

Do we care ?

Note

int b, c;
…
for (int i = 0; i < N; ++i) {
 *p = b + c;
}

Can we hoist?

Assume a target P:
- Signed addition: padd

Bonus!

Assume a target P:
- Signed addition: padd
- Explodes on SW

Bonus!

Codegen of res = add <nsw> a, b

CORRECT ?

res = padd a, b

Codegen of res = add <nsw> a, b

res = padd a, b

CORRECT ?

Codegen of res = add <nsw> a, b

if (a + b overflows) {
 res = <undefined value>
} else {
 res = padd a, b
}

Codegen of res = add a, b

if (a + b overflows) {
 res = <undefined value>
} else {
 res = padd a, b
}

No <nsw>!

Codegen of res = add a, b

if (a + b overflows) {
 res = <undefined value>
} else {
 res = padd a, b
} CORRECT ?

Codegen of res = add a, b

if (a + b overflows) {
 res = <undefined value>
} else {
 res = padd a, b
} CORRECT ?

Codegen of res = add a, b

if (a + b overflows) {
 res = <Actual 2’s complement result>
} else {
 res = padd a, b;
}

Codegen of res = add a, b

if (a + b overflows) {
 res = <Actual 2’s complement result>
} else {
 res = padd a, b;
}

Must do it without padd

Adding Definedness

Conflicts Between
Optimizations

if (poison) {
 ...
} else {
 ...
}

How do we define branch-on-poison ?

while (foo) {
 if (bar) {
 <body 1>
 } else {
 <body 2>
 }
}

Loop-Unswitching

while (foo) {
 if (bar) {
 <body 1>
 } else {
 <body 2>
 }
}

Loop-Unswitching

Loop-invariant

while (foo) {
 if (bar) {
 <body 1>
 } else {
 <body 2>
 }
}

Loop-Unswitching

Loop-invariantWrap
around

while (foo) {
 if (bar) {
 <body 1>
 } else {
 <body 2>
 }
}

Loop-Unswitching

if (bar) {
 while (foo) {
 <body 1>
 }
} else {
 while (foo) {
 <body 2>
 }
}

while (foo) {
 if (bar) {
 <body 1>
 } else {
 <body 2>
 }
}

Loop-Unswitching

if (bar) {
 while (foo) {
 <body 1>
 }
} else {
 while (foo) {
 <body 2>
 }
}

What if bar is poison ...

while (foo) {
 if (bar) {
 <body 1>
 } else {
 <body 2>
 }
}

Loop-Unswitching

if (bar) {
 while (foo) {
 <body 1>
 }
} else {
 while (foo) {
 <body 2>
 }
}

…foo is false upon
entering ...

while (foo) {
 if (bar) {
 <body 1>
 } else {
 <body 2>
 }
}

Loop-Unswitching

if (bar) {
 while (foo) {
 <body 1>
 }
} else {
 while (foo) {
 <body 2>
 }
}

… and branch-on-
poison is UB ?

…foo is false upon
entering ...

while (foo) {
 if (bar) {
 <body 1>
 } else {
 <body 2>
 }
}

Loop-Unswitching

if (bar) {
 while (foo) {
 <body 1>
 }
} else {
 while (foo) {
 <body 2>
 }
}No UB UB!

We never
reach that!

if (poison) {
 ...
} else {
 ...
}

Case 1: Define it Non-Deterministically

Non-deterministic choice

if (poison) {
 ...
} else {
 ...
}

Case 1: Define it Non-Deterministically

Non-deterministic choice

i.e. Assume we take both paths

while (foo) {
 if (bar) {
 <body 1>
 } else {
 <body 2>
 }
}

Loop-Unswitching

if (bar) {
 while (foo) {
 <body 1>
 }
} else {
 while (foo) {
 <body 2>
 }
}No UB

We never
reach that!

while (foo) {
 if (bar) {
 <body 1>
 } else {
 <body 2>
 }
}

Loop-Unswitching

if (bar) {
 while (foo) {
 <body 1>
 }
} else {
 while (foo) {
 <body 2>
 }
}No UB

Non-deterministic
choice

while (foo) {
 if (bar) {
 <body 1>
 } else {
 <body 2>
 }
}

Loop-Unswitching

if (bar) {
 while (foo) {
 <body 1>
 }
} else {
 while (foo) {
 <body 2>
 }
}No UB

Both are dead!

while (foo) {
 if (bar) {
 <body 1>
 } else {
 <body 2>
 }
}

Loop-Unswitching

if (bar) {
 while (foo) {
 <body 1>
 }
} else {
 while (foo) {
 <body 2>
 }
}No UB No UB

int foo = a + b;
if (foo == bar) {
 tar = a + b;
 *p = tar;
}

Global Value Numbering (GVN)

int foo = a + b;
if (foo == bar) {
 tar = a + b;
 *p = tar;
}

Global Value Numbering (GVN)

foo is now the same as bar

int foo = a + b;
if (foo == bar) {
 tar = a + b;
 *p = tar;
}

Global Value Numbering (GVN)

foo is now the same as bar

tar is the same as foo

GVN could potentially
replace tar with bar

int foo = a + b;
if (foo == bar) {
 tar = a + b;
 *p = tar;
}

Global Value Numbering (GVN)

int foo = a + b;
if (foo == bar) {
 *p = bar;
}

int foo = a + b;
if (foo == bar) {
 tar = a + b;
 *p = tar;
}

Global Value Numbering (GVN)

int foo = a + b;
if (foo == bar) {
 *p = bar;
}

What if bar is poison ?

int foo = a + b;
if (foo == bar) {
 tar = a + b;
 *p = tar;
}

Global Value Numbering (GVN)

int foo = a + b;
if (foo == bar) {
 *p = bar;
}

It poisons ==

int foo = a + b;
if (foo == bar) {
 tar = a + b;
 *p = tar;
}

Global Value Numbering (GVN)

int foo = a + b;
if (foo == bar) {
 *p = bar;
}

Branch-on-poison

int foo = a + b;
if (foo == bar) {
 tar = a + b;
 *p = tar;
}

Global Value Numbering (GVN)

int foo = a + b;
if (foo == bar) {
 *p = bar;
}

Non-deterministic
choice

int foo = a + b;
if (foo == bar) {
 tar = a + b;
 *p = tar;
}

Global Value Numbering (GVN)

int foo = a + b;
if (foo == bar) {
 *p = bar;
}

No UB

int foo = a + b;
if (foo == bar) {
 tar = a + b;
 *p = tar;
}

Global Value Numbering (GVN)

int foo = a + b;
if (foo == bar) {
 *p = bar;
}

No UB
Non-deterministic
choice

int foo = a + b;
if (foo == bar) {
 tar = a + b;
 *p = tar;
}

Global Value Numbering (GVN)

int foo = a + b;
if (foo == bar) {
 *p = bar;
}

No UB UB!

● IRs are not a science (yet)
● Why do we create IRs?
● Types of IRs

○ Trees
■ High-level transformations
■ Turn them into DAGs

○ SSA
■ Where is the value in a φ used?

○ Multi-Level IRs (WHIRL)
■ Trade off?

● Undefined Behavior and Poison
● Target and source independence in IRs

Overview

Transformations vs Cost Models

● The transformation may be target independent but
the cost model may not be

Transformations vs Cost Models

● The transformation may be target independent but
the cost model may not be

● Example: Loop unrolling
○ You can do it in Rust, but to do it effectively, you

need to know the target

Transformations vs Cost Models

● The transformation may be target independent but
the cost model may not be

● Example: Loop unrolling
○ You can do it in Rust, but to do it effectively, you

need to know the target
● Result: Target-independent IRs but target-aware

information flowing (e.g., TargetInfo)

How Target-Independent is LLVM IR?

● Conventional Wisdom: LLVM IR is target-independent

How Target-Independent is LLVM IR?

● Conventional Wisdom: LLVM IR is target-independent
● Reality pt1: Attributes like inreg and ton of intrinsics

A Front-End-Based Definition of Target Independence

“An IR is target independent if any front-end lowering to it
does not need to know the target”

Reality pt2

● Example: 3 different IRs for 3 different target

https://godbolt.org/

Reality pt2

● Example: 3 different IRs for 3 different target
● Why? → ABIs and calling conventions

https://godbolt.org/

Reality pt2

● Example: 3 different IRs for 3 different target
● Why? → ABIs and calling conventions
● But wait, LLVM IR abstracts away functions!

https://godbolt.org/

Reality pt2

● Example: 3 different IRs for 3 different target
● Why? → ABIs and calling conventions
● But wait, LLVM IR abstracts away functions!

○ Yes, but it doesn’t have classes

https://godbolt.org/

Reality pt2

● Example: 3 different IRs for 3 different target
● Why? → ABIs and calling conventions
● But wait, LLVM IR abstracts away functions!

○ Yes, but it doesn’t have classes
○ X86-64 ABI: “If a C++ object has either a non-trivial copy

constructor or a non-trivial destructor, it is passed by invisible
reference …”

https://godbolt.org/

Reality pt2

● More obvious example: int
● LLVM IR doesn’t have the bit-agnostic int
● You need to know the target to generate LLVM IR

But wait, at least it’s source independent right?

● IRs are not a science (yet)
● Why do we create IRs?
● Types of IRs

○ Trees
■ High-level transformations
■ Turn them into DAGs

○ SSA
■ Where is the value in a φ used?

○ Multi-Level IRs (WHIRL)
■ Trade off?

● Undefined Behavior and poison values
● Target and source independence in IRs

Overview

